An Empirical Analysis of Hunting Lease Pricing and Value of Game in Sweden

Justice Tei Mensah, Katarina Elofsson

Department of Economics Swedish University of Agricultural Sciences, Uppsala-Sweden

29th Jan, 2016

Presented at 2016 Workshop on Evaluation of Ecosystem Services Geneva-Switzerland

・ 同 ト ・ ヨ ト ・ ヨ ト

Background & Motivation ●○○○	Empirical Strategy	Results	Conclusion and Policy Implications
Background &	& Motivation		

- Hunting is an important activity undertaken by millions of people around the world
- Economic, Social and Cultural values are associated with hunting.
- Recreational hunting is big and growing, particularly in developed economies
 - Total value of recreational hunting in Sweden is 3 billion SEK (Mattson et al. 2008)
 - In the UK hunting tourism generates 12,000 jobs and revenues in excess of $\pounds 5$ million p.a (Murray and Simcos, 2003)
- There are associated costs as well
 - Wildlife damages to agriculture, forestry and motor accidents.

(日) (同) (E) (E) (E)

Hunting Lease Market in Sweden

- Hunting rights are vested in the hands of landowners
- Hunting teams purchase the right to hunt via lease from the landowners
- Leases can be long and short term.
- Hunting seasons for most valuable wildlife are regulated
- Main hunted species include moose, fallow deer, roe deer, wild boar.

(4月) イヨト イヨト

Background & Motivation

Empirical Strategy

Results

Justice Tei Mensah, Katarina Elofsson An Empirical Analysis of Hunting Lease Pricing and Value of G

- The importance of the hunting industry requires efficient regulation of the sector as well as mgt of wildlife populations to ensure sustainability.
- Key Question
 - What are the associated economic values of game species in Sweden?
 - How are hunting lease prices determined?
- Aim of the study
 - To estimate the economic value of main hunted game species to inform policy on wildlife mgt and regulation of hunting industry.
- Approach: Hedonic pricing method

・ 同 ト ・ ヨ ト ・ ヨ ト

Background & Motivation	Empirical Strategy	Results	Conclusion and Policy Implications
Empirical Strateg	gy		

- Estimate the determinants of hunting lease prices via Hedonic price model P = f(z, H, s)
 - Estimate via OLS
 - Estimate using spatial models (SAC/SARAR)
- 2 Estimate Implicit values i.e. marginal WTP

Spatial spillovers can occur via 2 channels

- Prices of an amenity in neighboring localities can exert upward or downward pressure on the price of the same amenity in a particular location.
- Our optimized over space
 Our optimized over space

The Spatial-Autoregressive with Auto-correlated Errors Model (SAC/SARAR) accounts for these effects. Data: Two year panel data from 54 Swedish municipalities.

Results

Conclusion and Policy Implications

Non-spatial model:pooled OLS

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Size of plot (log)	0.0896*	0.0877*	0.0859*	0.0654	0.0393	0.0747	0.0608	0.0857*	0.0434	
	(0.0474)	(0.0460)	(0.0454)	(0.0527)	(0.0465)	(0.0467)	(0.0497)	(0.0460)	(0.0528)	
Commercial/public own.	0.0534	0.0811*	0.0920**	0.0641	0.0833**	0.148***	0.154***	0.0922**	0.151***	0.212***
	(0.0424)	(0.0440)	(0.0433)	(0.0428)	(0.0404)	(0.0424)	(0.0430)	(0.0441)	(0.0436)	(0.0593)
Distance to city	-0.342***	-0.347***	-0.351***	-0.333***	-0.299***	-0.304***	-0.295***	-0.350***	-0.279***	-0.230***
	(0.0600)	(0.0600)	(0.0597)	(0.0594)	(0.0550)	(0.0529)	(0.0551)	(0.0618)	(0.0585)	(0.0474)
Income (log)	-1.418***	-1.521***	-1.532***	-1.386***	-1.174***	-1.446***	-1.390***	-1.529***	-1.271***	-1.092***
	(0.444)	(0.454)	(0.448)	(0.437)	(0.404)	(0.397)	(0.416)	(0.465)	(0.444)	(0.414)
Size of hunting group (log)	-0.141***	-0.138***	-0.138***	-0.130***	-0.0995**	-0.104**	-0.100**	-0.138***	-0.0902*	-0.0527*
	(0.0417)	(0.0407)	(0.0399)	(0.0437)	(0.0413)	(0.0444)	(0.0448)	(0.0404)	(0.0459)	(0.0302)
Forest share (log)	-3.106***	-3.377***	-3.386***	-3.263***	-3.208***	-2.963***	-3.064***	-3.388***	-2.932***	-0.206
	(0.655)	(0.683)	(0.661)	(0.666)	(0.668)	(0.685)	(0.671)	(0.660)	(0.688)	(0.205)
Forest share sq. (log)	3.945***	4.255***	4.244***	4.136***	4.009***	3.628***	3.757***	4.247***	3.595***	
	(0.745)	(0.768)	(0.742)	(0.753)	(0.725)	(0.718)	(0.701)	(0.741)	(0.719)	
Roe deer harvest (log)				0.0314			0.0135		0.0323	-0.00166
				(0.0271)			(0.0247)		(0.0289)	(0.0282)
Fallow deer harvest (log)					0.0836***	0.108***	0.108***		0.124***	0.121***
					(0.0178)	(0.0189)	(0.0176)		(0.0230)	(0.0241)
Moose harvest (log)						0.102***	0.0985***		0.110***	0.117***
						(0.0256)	(0.0261)		(0.0277)	(0.0308)
Wild boar harvest (log)							-0.00707	-0.000742	-0.00879	-0.00326
Game diversity index		0.140*					(0.0103)	(0.0107)	(0.0103) -0.114	(0.0124)
(all animals)		(0.0843)							(0.104)	
Game diversity index without boar		(0.0010)	0.255**					0.255**	(0.101)	
danie diversity index without boar			(0.111)					(0.112)		
Constant	14.42***	15.02***	15.09***	14.30***	13.05***	14.35***	14.09***	15.08***	13.42***	12.02***
	(2.590)	(2.654)	(2.619)	(2.559)	(2.344)	(2.287)	(2.405)	(2.709)	(2.568)	(2.488)
Observations	108	108	108	108	108	108	108	108	108	108
Adjusted R ²	0.385	0.399	0.412	0.386	0.457	0.507	0.500	0.45	0.502	0.343

Robust Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01; Dept. variable is log of lease price

Justice Tei Mensah, Katarina Elofsson

An Empirical Analysis of Hunting Lease Pricing and Value of G

Results

Conclusion and Policy Implications

Spatial model:SAC/SARAR

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Size of plot (log)	0.091**	0.094**	0.098**	0.087**	0.033	0.057	0.050	0.095	0.031	
	(0.041)	(0.042)	(0.042)	(0.044)	(0.040)	(0.040)	(0.043)	(0.042)	(0.044)	
Commercial/public own.	0.039	0.062	0.0710	0.042	0.043	0.098*	0.106**	0.076	0.093*	0.131***
	(0.053)	(0.056)	(0.056)	(0.054)	(0.050)	(0.052)	(0.052)	(0.058)	(0.052)	(0.060)
Distance to city	-0.255***	-0.272***	-0.283***	-0.257***	-0.238***	-0.239***	-0.229***	-0.277***	-0.212***	-0.160***
	(0.041)	(0.043)	(0.044)	(0.043)	(0.040)	(0.038)	(0.040)	(0.044)	(0.041)	(0.042)
Income (log)	-0.969***	-1.118***	-1.177***	-0.991***	-0.759**	-0.921***	-0.818**	-1.133***	-0.671***	-0.597***
	(0.368)	(0.386)	(0.388)	(0.374)	(0.354)	(0.341)	(0.354)	(0.395)	(0.361)	(0.371)
Size of hunting group (log)	-0.133***	-0.135***	-0.139***	-0.132***	-0.092**	-0.090**	-0.087**	-0.138***	-0.077**	-0.058*
	(0.039)	(0.040)	(0.039)	(0.040)	(0.038)	(0.036)	(0.037)	(0.039)	(0.037)	(0.03)
Forest share	-2.584***	-2.885***	-2.96***	-2.656***	-2.878***	-2.852***	-2.855***	-2.953	-2.713***	-0.1046
	(0.448)	(0.479)	(0.479)	(0.467)	(0.426)	(0.408)	(0.422)	(0.481)	(0.427)	(0.137)
Forest share sq.	3.352***	3.703***	3.782***	3.438***	3.699***	3.605***	3.621***	3.778 **	3.459***	
	(0.582)	(0.617)	(0.616)	(0.605)	(0.553)	(0.531)	(0.549)	(0.619)	(0.552)	
Roe deer harvest (log)				0.008			-0.003		0.014	-0.019
				(0.019)			(0.021)		(0.024)	(0.023)
Fallow deer harvest (log)					0.082***	0.108***	0.111***		0.126***	0.111***
					(0.019)	(0.019)	(0.02)		(0.022)	(0.023)
Moose harvest (log)						0.089***	0.085***		0.094***	0.092**
						(0.026)	(0.026)		(0.027)	(0.030)
Wild boar harvest (log)							-0.008	-0.004	-0.009	-0.004
							(0.009)	(0.010)	(0.009)	(0.011)
Game diversity index		0.093*							-0.109	
(all animals)		(0.068)							(0.078)	
Game diversity index without boar			0.192**					0.189 *		
			(0.098)					(0.098)		
Spatial lag dept var (λ)	0.373***	0.316**	0.295**	0.357***	0.264**	0.225**	0.239***	0.305***	0.244***	0.327***
	(0.123)	(0.140)	(0.143)	(0.138)	(0.115)	(0.106)	(0.107)	(0.142)	(0.105)	(0.151)
Spatial lag residual (p)	-0.427***	-0.373**	-0.345**	-0.409 **	-0.425 ***	-0.431***	-0.446***	-0.355**	-0.462 ***	-0.366*
	(0.149)	(0.168)	(0.174)	(0.167)	(0.131)	(0.127)	(0.129)	(0.173)	(0.126)	(0.197)
Observations	108	108	108	108	108	108	108	108	108	108
Time fixed effect	Yes	Yes	Yes	Yes	Yes	Yes	Yes ,	Yes	Yes	Yes

Justice Tei Mensah, Katarina Elofsson

An Empirical Analysis of Hunting Lease Pricing and Value of G

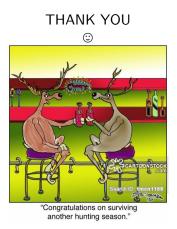
Summary of Regression results

- Negative Income effect
- Ongestion effect
- Distance decay effect
- Game diversity is important, esp. deer species
- Moose and fallow deer are the most important game in terms of lease pricing
- Spatial spillovers in hunting lease pricing

A (1) > (1) > (1)

Background & Motivation	Empirical Strategy	Results	Conclusion and Policy Implications
Marginal Implicit	Values		

• Marginal implicit values calculated from the regression models expressed in SEK (US dollar equivalent in parenthesis)


	Spatial Model	pooled OLS
Fallow deer	2,689	2,548
	(331)	(314)
Moose	12,145 $(1,496)$	14,145 (1,743)

・日・ ・ヨ・ ・ヨ・

Conclusion and Policy Implications

- Significant spatial spillovers in lease prices is indicative of information effect in the market. Hence possibility of natural monopolies is minimal.
 - However reducing constraints in access to hunting leases will be worthwhile.
- One of the second fallow deer attract higher economic values. Sustainable mgt of these wildlife species will inure greater benefits to society.
 - Encouraging the spread of fallow deer vis-a-vis the current system of restricting them to game estates.
 - Policies that seek to reduce predator populations should be encouraged.
 - Land use activities/policies must carefully consider the effects on wildlife populations.

・ロト ・回ト ・ヨト ・ヨト

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ