Valuation of Avalanche Protection by Forests

Roland Olschewski (WSL Swiss Federal Research Institute)

Valuation of Avalanche Protection

1. Introduction

2. Methodology

3. Results

4. Conclusions

Valuation of Avalanche Protection

Background:

Part of COST-Action E 45:
'European Forest Externalities' (EUROFOREX)

Aim:

Development and application of appropriate valuation methods for forest goods and services

Duration:

> 2007-2010

Financing:

State Secretariat for Education, Research and Innovation

1. Introduction 2. 3. 4.

Valuation of Avalanche Protection

Case Study Region:

> Andermatt (ca. 1.300 inhabitants, Kanton Uri)

Co-operation:

- Planning of Landscapes and Urban Systems, ETH Zürich
- > Environmental Policy and Economics, ETH Zürich
- WSL Institute for Snow and Avalanche Research SLF, Davos
- LINK-Institute for Market and Social Research, Zürich
- Dept. for Natural Hazards, Canton Bern
- Foresters in case study region

Valuation of Avalanche Protection

1. Introduction

2. Methodology

3. Results

4. Conclusions

Valuation of Avalanche Protection

1.

2. Methodology

3.

4.

- CE is a direct method to determine the value of public goods based on stated preferences
- Origin: conjoint analysis to rank alternative new products (marketing instrument)
- CE respondents choose between alternatives, which are described by particular attributes
- Assumption: the value of the public good depends on the combination of its attributes

Aim:

> Understand, how respondents take decisions

Perspective:

Causal: observable and unobservable factors lead to choice decision

Problem:

Choice cannot exactly be foreseen

Solution:

Calculation of probabilities based on an indicator function

- The alternatives are described by combinations of attributes
- The utility of an alternative depends on the combination of attributes
- The resulting series of elections gives information about the probability of an alternative to be elected
- The higher the level of desired attributes,...
 - ... the higher the level of utility generated by an alternative and
 - ... the higher the probability to be elected by the respondents

Implementation of a Choice Experiment

- 1. Characterize the decision problem
- 2. Select attributes and levels
- 3. Develop questionnaire
- 4. Develop experiment design
- 5. Collect data
- 6. Estimate variables of the model
- 7. Analyze impact on welfare and/or predict individual behavior

(based on Bennett & Adamowicz (2001))

1. 2. Methodology 3. 4.

Decision Problem concerning...

- Particular silvicultural interventions ?
- Single technical measures ?
- Determined risk reduction ?
- Entire protection forest ?

Case Study Andermatt

Scenario: Wind throw

ili i.

Protection measures 1: Wooden Stems

- after the wind throw approx. 50% of the stems are removed
- tree stumps remain(1-1.5 m high, bark removed)
- remaining stems are fixed as avalanche barriers (bark removed, pruned)

Protection measure 2: Wooden Grills

After the wind throw all lying stems are removed.

2. Methodology

3.

4.

1.

Wooden grills are installed as avalanche barriers.

Protection measures 3: Steel Bridges

- After the wind throw all lying stems are removed.
- Steel bridges are installed as avalanche barriers.

Protection measures 4: Steel Nets

- After the wind throw all lying stems are removed.
- Steel nets are installed as avalanche barriers.

Attributes and Levels

Attributes	Levels			
Damage avoidance (DA; %)	50 / 60 / 70	60 / 70 / 80	70 / 80 / 90	70 / 80 / 90
Duration (DU; years)	15 / 20 / 25	20 / 25 / 30	60 / 70 / 80	60 / 70 / 80
Starting time (ST; years)	1/3/5	1/3/5	1/3/5	1/3/5
Costs (CO; CHF)	100 / 150 / 200	200 / 250 / 300	400 / 500 / 600	400 / 500 / 600
Type (TY)	Wooden Stems	Wooden Grills	Steel Nets	Steel Bridges

Example of a Choice Set

Attribute	Option A	Option B	Option C
Туре			
	Steel bridges	Wooden stems	Wooden grills
Starting time	In 3 years	In 1 year	In 5 years
Duration	80 years	20 years	30 years
Damage avoided	80 % (8 million CHF)	60 % (6 million CHF)	70% (7 million CHF)
One-time payment per household	500 CHF	150 CHF	250 CHF

Visualisation Steel Bridges

Case Study Andermatt

Postal invitation to all 488 households

Online-survey with individual password

ili

129 fully answered questionnaires (approx. 26%)

Decision Rule

Individual n chooses alternative i with the highest utility U in the choice sets

$$U_{ni} = V_{ni} + \varepsilon_{ni}$$

 $V_{ni} = \beta_1 \cdot DA_{ni} + \beta_2 \cdot DU_{ni} + \beta_3 \cdot ST_{ni} + \beta_4 \cdot CO_{ni} + \beta_5 \cdot TY_{ni}$

- $U_{ni} = Utility$ for individual n from alternative i
 - = Systematic component of utility function as function of observable variables
- ε = Random component of utility function

- DA = Damage avoidance (in %)
- **DU** = Duration (in years)
- ST = Starting time (in years)
- CO = Costs (one-time payment per HH)
- *TY* = *Type of protection measure*

 \boldsymbol{V}

Valuation of Avalanche Protection

1. Introduction

2. Methodology

3. Results

4. Conclusions

Valuation of Avalanche Protection

4.

1.

2.

3. Results

Risk Calculation

RISK = Damage Potential x Probability of Occurrence

Damage potential = 10 Mio CHF

Risk Calculation

Duration	Probability of Occurrence	Risk for T=300	
(n years)	$(P = 1 - (1 - 1/T)^n)$	(CHF)	RISK
	Occurrence every 1 years		=
1		22/222	Damage Potential
-	0.33%	33 333	X
5	1.66%	165'559	Probability of Occurrence
10	3.28%	328'378	,
15	4.89%	488'500	
20	6.46%	645'972	
30	9.53%	953'137	
40	12.50%	1'250'216	
50	15.38%	1'537'539	
60	18.15%	1'815'427	
70	20.84%	2'084'190	
80	23.44%	2'344'128	Assumptions:
90	25.96%	2'595'529	Project duration (n) $=$ 80 years
100	28.39%	2'838'675	Return period (T) = 300 years
300	63.27%	6'327'345	Damage potential = 10 Mio CHF

Risk Calculation

WSL

- 300-year avalanche event
- Damage potential : 10 million CHF
- Probability:23.4% within 80 years
- Discounted risk per household: 470 CHF

Alternative (Replacement) Costs

		Wooden stems	Wooden grills	Bridges / Nets
Avalanche protection	(CHF/ha)	50'000	280'000	970'000
Afforestation	(CHF/ha)	30'000	30'000	30'000
Maintenance	(CHF/ha)	20'000	20'000	20'000
Total	(CHF/ha)	100'000	330'000	1'020'000
Costs in windthrow area (1.15 ha)	(CHF)	115'000	380'000	1'160'000
Discounted costs per household *	(CHF)	60	200	600

*) Assumptions: 488 households, 25% cost contribution

1.

2.

3. Results

Alternative costs

4.

Avoidance Costs of Silvicultural Measures

		Costs
Wood cutting (incl.		
cleaning)	(CHF/ha)	13'800
Silviculture	(CHF/ha)	21'200
Total	(CHF/ha)	35'000
Discounted costs in windthrow area (1.15 ha)	(CHF)	40'000
Discounted costs per household*	(CHF)	20

*) Assumptions: 488 households, 25% cost contribution

Multinomial Logit Model Coefficients

$$V_{ni} = \beta_1 \cdot DA_{ni} + \beta_2 \cdot DU_{ni} + \beta_3 \cdot ST_{ni} + \beta_4 \cdot CO_{ni} + \beta_5 \cdot TY_{ni}$$

Attribute	coe	efficient	std err	t test	p value
Damage avoidance (DA)	(β ₁)	0.0110	0.0044	2.48	0.01
Duration (DU)	(β ₂)	-0.0049	0.0045	-1.10	0.27
Starting time (ST)	(β ₃)	-0.1730	0.0186	-9.31	0.00
Costs (CO)	(β ₄)	-0.0024	0.0006	-4.33	0.00
Type (TY)	(β ₅)				
- Bridges		0.8510	0.3260	2.61	0.01
- Grills		0.9050	0.1210	7.47	0.00
- Nets		0.2320	0.3250	0.71	0.48
- Stems		fixed			

4.

1. 2.

3. Results

CE

Willingness to Pay for Reducing Starting Time

$$WTP = -\frac{\hat{\beta}_3}{\hat{\beta}_4} \cdot DA$$

$$WTP = \frac{0.1730}{0.0024} \cdot ST = 70.90 \cdot ST$$

Starting time reduction of	WTP one-time payment	
1 year	approx. 70 CHF	

- WTP = Willingness to pay
- β_3 = Marginal utility of start time reduction

1. 2.

3. Results

CE

4.

 β_4 = Marginal utility of income

Multinomial Logit Model Coefficients

1. 2.

3. Results

CE

4.

$$V_{ni} = \beta_1 \cdot DA_{ni} + \beta_2 \cdot DU_{ni} + \beta_3 \cdot ST_{ni} + \beta_4 \cdot CO_{ni} + \beta_5 \cdot TY_{ni}$$

Attribute	coe	fficient	std err	t test	p value
Damage avoidance (DA)	(β ₁)	0.0110	0.0044	2.48	0.01
Duration (DU)	(β ₂)	-0.0049	0.0045	-1.10	0.27
Starting time (ST)	(β ₃)	-0.1730	0.0186	-9.31	0.00
Costs (CO)	(β ₄)	-0.0024	0.0006	-4.33	0.00
Type (TY)	(β ₅)				
- Bridges		0.8510	0.3260	2.61	0.01
- Grills		0.9050	0.1210	7.47	0.00
- Nets		0.2320	0.3250	0.71	0.48
- Stems		fixed			

Willingness to Pay for Avoiding Damages

$$WTP = -\frac{\hat{\beta}_1}{\hat{\beta}_4} \cdot DA$$

$$WTP = \frac{0.0110}{0.0024} \cdot DA = 4.51 \cdot DA$$

Damage avoidance of		WTP one-time payment	
100%	(10.0 Mio. CHF)	approx. 450 CHF	

- *WTP* = *Willingness to pay*
- β_1 = Marginal utility of damage avoidance

1. 2.

3. Results

CE

4.

 β_4 = Marginal utility of income

Comparison of Valuation Approaches

4.

1.

2.

3. Results Comparison

Approach	Alternative	One-time payment
Discounted collective risk *	300-year event	470 CHF
Discounted alternative costs *	Wooden stems Wooden grills Steel bridges / nets	60 CHF 200 CHF 600 CHF
Discounted avoidance costs *	Silvicultural measures	20 CHF
Willingness to pay *	Damage avoidance	450 CHF
		*) per household

Valuation of Avalanche Protection

1. Introduction

2. Methodology

3. Results

4. Conclusions

Conclusions

- Several valuation methods are available
- > WTP is about as high as the estimated risk per household
- WTP would cover the alternative costs of wooden stems and grills
- WTP would not cover the costs of steel measures
- WTP exceeds by far the costs for silvicultural avoidance measures

Olschewski, R. (2013): How to value protection from natural hazards – A step-by-step discrete choice approach. *Natural Hazards and Earth System Sciences.* 13(4), 913-922.

Olschewski et al. (2012): Avalanche protection by forests – A choice experiment in the Swiss Alps. *Journal of Forest Policy and Economics.* 15, 108-113.

e-mail: roland.olschewski@wsl.ch

Thanks for your attention!

